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We study effects of strong fluctuations on the transport properties of superconductors near the classical
critical point. In this regime conductivity is set by the delicate interplay of two competing effects. The first is
that strong electron-electron interactions in the Cooper channel increase the lifetime of fluctuation Cooper pairs
and thus enhance conductivity. On the other hand, quantum pair-breaking effects tend to suppress supercon-

ductivity. An interplay between these processes defines new temperature regime, Gi�
T−Tc

Tc
��Gi, where fluc-

tuation induced transport becomes more singular, here Gi is the Ginzburg number. The most singular contri-
butions to the conductivity stem from the dynamic Aslamazov-Larkin term, and interesting Maki-Thompson
and interference corrections. The crossover temperature Tc

�Gi from weakly to strongly fluctuating regime is
generated self-consistently as the result of scattering on dynamic variations in the order parameter. We suggest
that the way to probe nonlinear fluctuations in superconductors is by magnetoconductivity measurements in the
perpendicular field.
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In the context of transport properties of disordered fluctu-
ating superconductors one usually discusses three types of
contributions to the normal-state Drude conductivity
�D=e2�D near Tc, see Ref. 1, here D is the diffusion coeffi-
cient and � is the single-particle density of states. The first
one, ��AL, is called Aslamazov-Larkin �AL� contribution.2 It
has a simple physical interpretation as the direct charge
transfer mediated by the fluctuation Cooper pairs. Within the
microscopic formulation, see corresponding diagram in the
Fig. 1�a�, it reads analytically

��AL

�D
=

�

32�Tc
3�

q

Dq2� d�

sinh2 �

2T

�Im Lq,�
R �2, �1�

where Lq,�
R =− 8T

� �Dq2+�GL
−1 − i��−1 is the retarded component

of the interaction �fluctuation� propagator, and
�GL

−1 = 8T
� ln T

Tc
� 8

� �T−Tc� is inverse Ginzburg-Landau time. Af-
ter the energy and momentum integrations Eq. �1� reduces to
the celebrated result2

��AL

�D
=

1

2�g
�Tc�GL� = Gi� Tc

T − Tc
	 �2�

for the thin-film superconductors with the thickness
b��D�GL, where g=1 /�Db is the dimensionless conduc-
tance and Gi=1 /16g is the Ginzburg number. It is worth
recalling that AL term can be calculated from the time-
dependent Ginzburg-Landau theory and to some extent is
classical.

The other two contributions have purely quantum origin.
The Maki-Thompson �MT� correction to conductivity,3

��MT, can be understood as the coherent Andreev reflection
of electrons on the local fluctuations of the order parameter.
Its most singular part near Tc is given by

��MT

�D
= −

1

2��T
�

q
� d	d� coth

�

2T

cosh2 	

2T

�Im Lq,�
R �
Cq,2	+�

R 
2, �3�

which is shown diagrammatically in the Fig. 1�b�. Here
Cq,	

R = �Dq2+�s
−1− i	�−1 is the Cooperon, which accounts for

the scattering by impurities in the particle-particle channel
�sum of the ladder-type diagrams in the Fig. 1�d��, and �s is
the spin-flip time. After the integrations in two-dimensional
case Eq. �3� reduces to3

��MT

�D
=

1

�g

Tc�GL

1 − �GL/�s
ln� �s

�GL
	 , �4�

which unlike AL term �Eq. �2�� exhibits strong sensitivity to
the dephasing time and is formally divergent without pair-
breaking processes �no magnetic impurities for example�.
This is famous feature of the MT correction.

Finally, the density of states �DOS� effects4 originate from
the depletion of the energy states near the Fermi level by
superconductive fluctuations. It leads to the correction to
conductivity of the form �see Fig. 1�c��

��DOS

�D
=

1

2��T
Re�

q
� d	d� coth

�

2T

cosh2 	

2T

�Im Lq,�
R ��Cq,2	−�

R �2,

�5�
which in contrast to AL and MT contributions is negative but
has much weaker �logarithmic instead of the power-law�
temperature dependence

��DOS

�D
= −

7
�3�
�4g

ln�Tc�GL� , �6�

where 
�x� is the Riemann zeta function.
Applicability of the perturbative treatment for supercon-

ductive fluctuations implies that corresponding corrections to
the conductivity �Eqs. �2�, �4�, and �6�� are small as com-
pared to its bare Drude value. Thus, requirement that
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��AL+��MT��D restricts perturbation theory to the tem-
peratures above the Ginzburg region, TcGi�T−Tc. How-
ever, as it has been shown by Larkin and Ovchinnikov,5 this
conclusion is premature. It turns out that Eq. �2� is applicable
only as long as T−Tc�Tc

�Gi while ��AL becomes more
singular in the immediate vicinity of the critical temperature
Gi�

T−Tc

Tc
��Gi where5

��AL

�D
�

1

�3g2 �Tc�GL�2�Tc���, ��
−1 = max��s

−1,T�Gi . �7�

In addition it was demonstrated by Reizer6 that MT term
saturates near Tc

��MT

�D
�

1

2��g
ln�Tc�GL

�g
	, Gi �

T − Tc

Tc
� �Gi �8�

even without an extrinsic pair breaking, such as magnetic
impurities. Thus, it was concluded that interaction correc-
tions to the conductivity of fluctuating superconductors are
governed by ��AL �Eq. �7�� at Gi�

T−Tc

Tc
��Gi. Stronger sin-

gularity of the AL term was attributed to the lifetime en-
hancement of the preformed Cooper pairs by nonlinear-
fluctuation effects.5 At the same time, saturation of the
interference MT contribution emerges as the result of scat-
tering on dynamical variations in the order parameter, which
generate an intrinsic dephasing time ��

−1�T�Gi�T /�g.6,7 In
what follows we show that this physical picture of
fluctuations-enhanced transport is incomplete. We identify
additional class of interaction corrections, not discussed in
the literature before, which strongly influence conductivity at
the onset of superconducting transition. At the technical level
diagrammatic analysis for the conductivity corrections is car-
ried within nonlinear sigma model of fluctuating supercon-
ductors, see Ref. 8 for the review.

Apart from the conventional contributions to the conduc-
tivity, which appear to the first order in superconductive fluc-
tuations, there are certain next leading order terms which
make conductivity to be more singular near the transition.
We find that among those the contributions shown in the
Fig. 2 are the most important. Obviously, these terms carry
and extra small prefactor, Gi1, due to the perturbative
treatment of fluctuation effects, however, they exhibit much

stronger temperature dependence than ��AL and ��MT, and
become more important in the temperature region
Gi�

T−Tc

Tc
��Gi.

We find two MT contributions which depend differently
on the dephasing time. The first one is presented in the Fig.
2�a� and its most singular part near Tc reads analytically as

��MT
a

�D
= −

�

�2�
qq�
� d�d��d	

cosh2 	

2T

Lq,�
K Lq�,��

K �Cq,2	−�
R �2�Cq�,2	−��

A �2.

�9�

This term represents interaction of superconductive fluctua-
tions. Notice here, that although diagrammatically ��MT

a

looks like second-order DOS effect, in fact, it should be clas-
sified as MT term by the analytical properties. Indeed, MT
contributions involve mixture of retarded and advanced
Cooperons while DOS terms always bring Cooperons of the
same causality. This important difference makes DOS contri-
butions to be subleading in powers of Tc�GL �compare Eqs.
�3� and �4� with Eqs. �5� and �6��. It is worth recalling that
��MT

a is already familiar from the studies of diffusive9 and
ballistic10 tunnel junctions, and granular superconductors11

above Tc. Assuming static pair breaking at this stage and
after the consecutive energy integrations Eq. �9� reduces to

��MT
a

�D
= �

qq�

�16Tc
3/��2�

�Dq2 + �GL
−1 ��Dq�2 + �GL

−1 ��DQ2 + max��s
−1,�GL

−1 �3 ,

�10�

where Q2=q2+q�2. The remaining q sums depend signifi-
cantly on the effective dimensionality. For the quasi-two-
dimensional case we find

��DOS

(c)

(b)(a)
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FIG. 1. Superconductive fluctuation corrections to the normal
state Drude conductivity: �a� Aslamazov-Larkin diagram, �b� Maki-
Thompson correction, �c� density of states contribution, and �d�
Cooperon impurity vertex.
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FIG. 2. Singular corrections to the fluctuation conductivity: �a�
diagrams and �b� represent Maki-Thompson contributions due to
interaction of fluctuations and their interference correspondingly;
diagrams �c�–�f� represent mixture of the density of states and
Maki-Thompson scattering processes.

BRIEF REPORTS PHYSICAL REVIEW B 81, 012507 �2010�

012507-2



��MT
a

�D
=

1

�3g2��2 − 9

6
�Tc�GL�3 �s � �GL

�Tc�s�3ln2��GL/�s� �s  �GL.
� �11�

One special feature of this result is that it remains finite even
in the absence of extrinsic phase breaking, when �s→�. This
is unlike the other MT contribution shown in Fig. 2�b�,
which represents an interference of superconductive fluctua-
tions and its most singular part is given by

��MT
b

�D
= −

�

�2�
qq�
� d�d��d	

cosh2	 + ��

2T

�Lq,�
K Lq�,��

K 
Cq,2	+�
R 
2
Cq�,2	+��

A 
2. �12�

Technically, it is different from Eq. �9� by the structure of the
Cooperon propagators. Notice that the absolute value of
CR�A� makes the integrand of Eq. �12� to be extended in the
energy space whereas corresponding expression in Eq. �9� is
short ranged due to the pole structure of the �CR�2�CA�2 prod-
uct. This feature translates into the different temperature de-
pendence of ��MT

b than that of ��MT
a . Indeed, after energy

integrations Eq. �12� can be brought to the form

��MT
b

�D
=

16Tc
3

��2 �
qq�

1

�Dq2 + �GL
−1 ��Dq�2 + �GL

−1 �

�
1

�Dq2 + �s
−1��Dq�2 + �s

−1��DQ2 + max��s
−1,�GL

−1 �
,

�13�

which gives eventually in two dimensions with the logarith-
mic accuracy

��MT
b

�D
�

1

�3g2��Tc�GL�3ln2��s/�GL� �s � �GL

�Tc�s�3ln2��GL/�s� �s  �GL.
� �14�

Clearly, when compared to the corresponding limit of Eq.
�11�, the divergence of ��MT

b at weak pair breaking �s→�, is
the manifestation of coherence.

The remaining four terms in Figs. 2�c�–2�f� represent the
mixture of MT and DOS contributions, we thus label those
collectively by ��MTD. Although each individual diagram has
slightly different analytical structure, their most divergent
parts, however, are the same for all four terms. We find then
for the sum of these contributions, ��MTD�4�� �Fig. 2�c��
following expression:

��MTD

�D
=

4�

3�2�
qq�
� d�d��d	

cosh2	 + �

2T

�Lq,�
K Lq�,��

K 
Cq,2	+�
R 
2�Cq�,2	−��

R �2. �15�

After the standard steps of integration this equation reduces
to

��MTD

�D
= −

32Tc
3

3��2�
qq�

1

�Dq2 + �GL
−1 ��Dq�2 + �GL

−1 �

�
1

�Dq2 + �s
−1��DQ2 + max��s

−1,�GL
−1 �2 , �16�

which gives for the conductivity correction of a thin super-
conducting film

��MTD

�D
� −

1

3�3g2� �Tc�GL�3ln��s/�GL� �s � �GL

2�Tc�s�3ln2��GL/�s� �s  �GL.
�

�17�

We see from here that mixed contributions suppress fluctua-
tion conductivity, unlike MT terms. Second, mixed terms
exhibit weaker divergence then ��MT

b for the small static pair
breaking �s→�. These singular MT and mixed contributions
�Eqs. �11�, �14�, and �17�� together with the AL correction
Eq. �7� represent the leading terms in the asymptotic expan-
sion of fluctuation conductivity at the onset of superconduct-
ing transition.12

Since ��MT
a�b� and ��MTD have distinct temperature

dependence there is a way to identify these terms by the
appropriate transport experiment. The most suitable one
would be the magnetoconductivity measurement in the per-
pendicular field. Indeed, magnetic field acts as an effective
pair-breaking mechanism which drives a superconductor
away from the critical region. This is simply understood by
looking at the pole structure of the interaction propagator
LR�A��q ,��� �Dq2+�GL

−1 � i��−1 and recalling that magnetic
field H applied perpendicularly to a film changes the continu-
ous spectrum of superconducting fluctuations into its quan-
tized form Dq2→�n=�H�n+1 /2�, where �H=4eDH is the
cyclotron frequency and n=0,1 ,2 , . . . is the number of the
Landau level. It becomes clear now that if cyclotron fre-
quency �H exceeds �GL

−1 , it is �H that cuts all energy-transfer
integrations, since ��max��H ,�GL

−1 . Roughly speaking it
means that in the expressions for the conductivity corrections
Eqs. �11�, �14�, and �17� the scale of T−Tc is replaced by �H.
This gives a possibility to restore the temperature depen-
dence of ���T� by observing its behavior as the function of
magnetic H, which traces corresponding dependence on
T−Tc. In what follows we calculate ��MT

a �H� explicitly and
quote only final results for the remaining contributions.

Starting from Eq. �10� we replace momentum integration
by the discrete sum over the Landau levels �q→

�H

4�Db�n=0
� ,

where the prefactor accounts for the degeneracy in the posi-
tion of the orbit, and find

��MT
a �H�
�D

= �
nn�=0

�
�H

2 Tc
3/��3g2�

��n + �GL
−1 ���n� + �GL

−1 ���nn� + max��s
−1,�GL

−1 �3

�18�

where �nn�=�n+�n�. If �Hmax��GL
−1 ,�s

−1, which corre-
sponds to the zero-field limit, we restore Eq. �11�. At higher
fields there are two regimes. For �GL

−1 �H�s
−1 quantization
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of the spectrum of fluctuations is already important in the
interaction propagator while vertex Cooperons can still be
taken at zero field. As the result ��MT

a �H� turns out to be
logarithmic in H. At even higher fields �H��s

−1 supercon-
ducting fluctuations are strongly suppressed and correspond-
ing correction decays inversely proportional to the third
power of magnetic field. Quantitatively we find following
asymptotes for these limits:

��MT
a �H�
�D

=
1

�3g2��Tc�s�3ln2�1/�H�s� �GL
−1  �H  �s

−1

4.46�Tc/�H�3 �H � �s
−1.

�
�19�

Similar analysis can be carried for Eqs. �13� and �16�. We
find that interference contribution ��MT

b �H� follows the same
asymptotes as ��MT

a �H� while mixed term ��MTD�H� is nega-
tive and differs from Eq. �19� only by the numerical coeffi-
cient 2/3 in the limit �GL

−1 �H�s
−1, and 1.4 in the limit

�H��s
−1. The magnetic field dependence of the conventional

AL and MT contributions was recently discussed in Ref. 14.
Finally, Fig. 3 schematically shows anomalous correction to
the conductivity induced by the interacting fluctuations in the
whole range of magnetic fields.

Without an extrinsic static pair-breaking �s→� physical
origin of the divergent MT contribution ��MT

b and mixed
terms ��MTD comes from the softness of the Cooperon. This
is exactly the same problem that exists for the conventional

MT contribution Eq. �4� and thus, regularization is achieved
by following the prescription given in the Ref. 6, which al-
lowed to regularize ��MT �Eq. �8��. The main idea is to in-
clude Cooperon self-energy6,7,15

�	,−	 = �
q
� d�

��
Im�Lq,�

A �Re�Cq,2	−�
R ��coth

�

2T
+ tanh

	 − �

2T
�

�20�

into the general scheme of calculations. It is important to
realize that this object is strongly 	 dependent in the broad
range of energies6

�	,−	 =
T2

2�g
	

, �GL

−1 � 	  T . �21�

Since �	,−	 enters now the Cooperon instead of �s
−1 an inte-

gration in Eq. �12� over the fermionic energy 	 must be com-
pleted carefully. An inspection of the integrand reveals that
	�T /�g give the most important contribution. After an ex-
plicit calculation we find

��MT
b

�D
�

1

4�2�3/2

1
�g

ln2� �GL

��
	, ��

−1 �
T
�g

, �22�

which is applicable in the temperature range
Gi�

T−Tc

Tc
��Gi. Thus, inclusion of �	,−	 self-consistently

generates an intrinsic dephasing time �� which regularizes
��MT

b . Even more importantly, quantum dynamic pair break-
ing encoded by the Cooperon self-energy changes dramati-
cally the temperature dependence of this singular interaction
correction and leads to its saturation apparent from Eq. �22�
���MT

a also saturates in this case as shown in Ref. 6�. The
same regularization approach applied to the mixed term
��MTD gives a contribution that is three times smaller then
��MTD, which concludes our analysis.
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FIG. 3. Sketch for the characteristic magnetic field dependence
of the singular Maki-Thompson correction to the conductivity
�Eqs. �18�� under the condition of strong phase-breaking scattering
�GL��s. In the opposite case one should replace �GL��s.
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